
Control System Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ Release Notes
© COPYRIGHT 2002–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

R2016a

Redesigned Control System Designer App: Design SISO
controllers for feedback systems using improved
interactive workflows . 1-2

Control System Tuner App and systune Command:
Automatically tune single-loop and multiloop control
systems to meet design requirements 1-3

Model Reducer App: Compute and compare reduced-order
models using interactive workflows 1-3

Passivity and Conic Sectors: Analyze and tune control
systems for passivity and other sector bounds 1-4

Limited Balanced Truncation: Reduce model order according
to energies within time-domain and frequency-domain
intervals . 1-5

sampleBlock and rsampleBlock commands for sampling
generalized models . 1-6

Spectral factorization of LTI models 1-6

Renamed tunable control design blocks 1-6

Functionality being removed or changed 1-7

iv Contents

R2015b

pid2 and pidstd2 Model Objects: Represent, analyze, and use
2-DOF PID controllers for control design 2-2

2-DOF PID Controller Tuning: Automatically tune the gains
of 2-DOF PID controllers with PID Tuner app and pidtune
command . 2-2

Save Current Controller Design as Baseline in PID Tuner . . 2-3

Change in LPV System block default values for model
delays . 2-4

Analysis Plots Wrap Phase in Interval [0º,360º) 2-5

R2015a

Improved input disturbance rejection with the PID tuning
algorithm . 3-2

Option to specify code generation settings in LPV System
block . 3-3

connect command syntax for specifying analysis point
locations . 3-3

LTI Viewer renamed to Linear System Analyzer 3-4

sisotool function renamed to controlSystemDesigner . . . 3-5

getBlockValue returns all block values in structure 3-5

Functionality being removed or changed 3-6

v

R2014b

LPV System block for modeling and simulating linear
parameter-varying systems . 4-2

Kalman Filter block for estimating states of linear time-
invariant and linear time-varying systems 4-3

AnalysisPoint Control Design Block for Marking Points of
Interest for Linear Analysis . 4-3

pidtool function renamed to pidTuner 4-4

getSwitches function renamed to getPoints 4-5

Functionality being removed or changed 4-5

R2014a

Redesigned PID Tuner app for improved PID tuning
workflow . 5-2

PID controller tuning using system identification to model
the plant from measured input-output data in the PID
Tuner app (with System Identification Toolbox) 5-2

freqsep function for decomposing a linear system into fast
dynamics and slow dynamics . 5-2

damp command display includes time constant information 5-3

vi Contents

R2013b

SamplingGrid property for tracking dependence of array of
sampled models on variable values 6-2

Option to retain unconnected states when interconnecting
models using connect command . 6-2

connect command always returns state-space or frequency
response data model . 6-3

updateSystem command for updating dynamic system data in
a response plot . 6-3

getLoopID renamed to getSwitches . 6-3

LoopID property of loopswitch renamed to Location 6-4

R2013a

Transient behavior slider for PID Tuner, increasing
control over reference tracking and disturbance rejection
performance . 7-2

R2012b

ltiblock.pid2 and loopswitch objects for tuning two-degree-of-
freedom PID controllers and marking loop opening sites
for open-loop requirements . 8-2

Commands for obtaining open-loop responses, closed-loop
responses, and current values of tunable components from
control system models . 8-2

vii

Option for elementwise operation of model query commands
on model arrays . 8-3

R2012a

Frequency Analysis Commands for Calculating Peak Gain
and Finding Gain-Crossover Frequencies 9-2

Specify Target Crossover Frequency as Input to pidtune . . 9-2

Rescaled Impulse Response and Impulse-Invariant Time
Domain Conversion . 9-2

First-Order Hold Method for d2c . 9-3

tzero Computes Invariant Zeros and Transmission Zeros . . 9-3

Models Created With System Identification Toolbox Can Be
Used Directly With Control System Toolbox Functions . . 9-3

Functionality Being Removed or Changed 9-4

R2011b

Formula-Based Specification of Summing Junctions and
Vector Signal Naming for sumblk and connect 10-2

Commands for Interacting with Control Design Blocks in
Generalized LTI Models . 10-2

Functionality Being Removed or Changed 10-2

viii Contents

R2011a

New Model Objects for Representing Tunable Parameters
and Systems with Tunable Components 11-2

New Time and Frequency Units for Models and Response
Plots . 11-3

Discrete-Time PID Controller Objects Have Stable Derivative
Filter Pole . 11-4

New Variable q^–1 for Expressing Discrete-Time Transfer
Functions . 11-4

R2010b

New Commands and GUI for Modeling and Tuning PID
Controllers . 12-2

PID Controller Design with the New PID Tuner GUI 12-2
PID Controller Design with the New pidtune Command . . . 12-2
Modeling PID Controllers in Parallel Form or Standard

Form . 12-3

Improved PID Tuning Options in SISO Design Tool 12-3

Ability to Analyze a Controller Design for Multiple Models
Simultaneously in SISO Design Tool 12-3

Change in Output of repsys Command 12-4

ix

R2010a

Enhanced c2d Command to Approximate Fractional Time
Delays in Tustin and Matched Discretization Methods . . 13-2

New Commands for Specifying Options for Continuous-
Discrete Conversions . 13-2

New FDEL Command to Remove Specified Data from
Frequency Response Data (FRD) Models 13-2

R2009b

Ability to Design Compensators for New Types of Plants . . 14-2

New Automated PID Tuning Method 14-2

R2009a

Variable q Now Defined as the Forward Shift Operator z . 15-2

R2008b

New Design Tools for Linear-Quadratic-Gaussian (LQG)
Servo Controllers with Integral Action 16-2

Current Flag Moved from lqgreg to kalman 16-2

New Upsampling Method for Rate Conversion in Discrete-
Time Models . 16-2

x Contents

New Scaling Tools to Enhance the Accuracy of Computations
with State-Space Models . 16-3

New Command to Reorder the States of State-Space
Models . 16-3

Enhanced Support for Customizing Response Plots 16-3

R2008a

Updated Error and Warning Message System 17-2

R2007b

Updated and Expanded Demos . 18-2

R2007a

Analysis of Time Delay Systems Now Fully Supported 19-2

New and Updated Automated Tuning Methods 19-2

New Tustin and Prewarp Options for d2d Function 19-2

R2006b

New Loop Configurations in the SISO Design Tool 20-2

xi

New Design Requirements . 20-2

R2006a

SISO Design Tool . 21-2
Compensator Optimization Is Now Supported 21-2
Improved Compensator Editor . 21-2
Multi-Loop Compensator Design Support 21-2
SISO Design Tool Fully Integrated with the Controls &

Estimation Tools Manager . 21-2

LTI Viewer Enhancements . 21-3

LTI Objects . 21-3
Descriptor and Improper State-Space Models Fully

Supported . 21-3
New Commands to Calculate Time Response Metrics 21-3
Simplified System Interconnections Using I/O Channel

Names . 21-3
Changes in the Representation of I/O Delays in State-Space

Models . 21-3
New Name Property for LTI Objects 21-4
New Commands and Operations for LTI Objects 21-4

Numerical Algorithms . 21-4

R14SP3

No New Features or Changes

xii Contents

R14SP2

Command-Line API for Customizing Plots 23-2

Constraint Types for SISO Design . 23-2

Bode and Nichols Plots Have Additional Options 23-2

Model-Approximation and Order-Reduction Commands . . 23-2

R2016a
Version: 10.0

New Features

Bug Fixes

Compatibility Considerations

R2016a

1-2

Redesigned Control System Designer App: Design SISO controllers for
feedback systems using improved interactive workflows

The redesigned Control System Designer app streamlines workflows for designing
SISO controllers for feedback control systems using graphical and automated tuning
methods.

For more information on using Control System Designer, see:

• Control System Designer

1-3

• “Control System Designer Tuning Methods”
• “Bode Diagram Design”
• “Design Compensator Using Automated Tuning Methods”
• “Analyze Designs Using Response Plots”

Control System Tuner App and systune Command: Automatically tune
single-loop and multiloop control systems to meet design requirements

Control System Toolbox™ now includes automatic tuning tools that previously required
a Robust Control Toolbox™ license. Control System Tuner and the systune command
automatically tune control systems from high-level design goals you specify, such as
reference tracking, disturbance rejection, and stability margins.

To tune a control system, you specify the tunable elements of your control system. You
then capture your design requirements using the library of tuning goals. The software
jointly tunes all the free parameters of your control system regardless of architecture,
number of feedback loops, or whether it is modeled in MATLAB® or Simulink®. (Tuning
control systems modeled in Simulink requires a Simulink Control Design™ license.)

For information about using these tools, see:

• “Tuning with Control System Tuner”
• “Programmatic Tuning”

You can also use the systune command to tune gain-scheduled controllers for control
systems in which plant dynamics change with operating conditions or time. For more
information, see “Gain Scheduling”.

Model Reducer App: Compute and compare reduced-order models using
interactive workflows

The new Model Reducer app is an interactive tool for computing reduced-order
approximations of high-order models. Working with lower-order models can simplify
analysis and control design. Simpler models are also easier to understand and
manipulate. You can reduce a plant model to focus on relevant dynamics before designing
a controller for the plant. Or, you can use model reduction to simplify a full-order
controller. Using any of the following model-reduction methods, Model Reducer helps
you reduce model order while preserving model characteristics that are important to your
application:

R2016a

1-4

• Balanced Truncation — Remove states with low energy contributions.
• Pole/Zero Simplification — Eliminate canceling or near-canceling pole-zero pairs.
• Mode Selection — Select modes by specifying a region of interest in the complex

plane.

Model Reducer also provides response plots and error plots to help ensure that the
reduced-order model preserves important dynamics.

For an example showing how to use Model Reducer, see “Reduce Model Order Using
the Model Reducer App”. For more information about model reduction generally, see
“Model Reduction Basics”.

Passivity and Conic Sectors: Analyze and tune control systems for
passivity and other sector bounds

A linear system is passive when it cannot produce energy on its own and can only
dissipate the energy initially stored in it. More generally, an I/O map is passive if, on
average, increasing the output requires increasing the input. Passive control is often part
of the safety requirements in process control, tele-operation, human-machine interfaces,
and system networks.

Use the following new commands to analyze the passivity of linear systems:

• isPassive — Check passivity of linear system.
• getPassiveIndex — Compute various measures of the excess or shortage of

passivity of a linear system.
• passiveplot — Calculate and plot passivity index as a function of frequency.

Mathematically, a system is passive when all its I/O trajectories are restricted to a
particular sector of the I/O space. More generally, a conic system is a system whose
trajectories lie in a given conic sector. Conic sector bounds arise, for example, in robust
control of feedback loops with static nonlinearities. The following new commands let you
analyze how well a linear system lies within any conic sector.

• getSectorIndex — Check whether the output trajectories of a linear system lie in
a particular conic sector. Compute the relative sector index, a measure of how tightly
the trajectories fit within the sector.

• getSectorCrossover — Compute the frequencies at which the range of trajectories
crosses the sector boundary.

1-5

• sectorplot — Calculate and plot sector index as a function of frequency.

New tuning goals let you enforce passivity when tuning a control system using Control
System Tuner or the systune command.

Constraint Command Line Control System Tuner

Enforce passivity on
specified I/Os in the control
system

TuningGoal.Passivity “Passivity Goal”

Enforce passivity on
specified I/Os with
frequency-dependent
weighting

TuningGoal.WeightedPassivity“Weighted Passivity Goal”

For more background and details about the notions of passivity and sector bounds, see:

• “About Passivity and Passivity Indices”
• “About Sector Bounds and Sector Indices”

Limited Balanced Truncation: Reduce model order according to energies
within time-domain and frequency-domain intervals

You can now perform balanced-truncation model reduction and compute Hankel singular
values based on state energies calculated within specified time and frequency intervals.

• To perform frequency-limited or time-limited balanced truncation, use
balredOptions to set the TimeIntervals or FreqIntervals options for the
balred command. When you use these options, balred determines which states to
truncate based on their energy contributions within the specified interval only. For
more details, see the reference pages for balredOptions and balred.

• To compute or plot Hankel singular values for specific time or frequency, use
hsvdOptions or hsvoptions to set the TimeIntervals and FreqIntervals
options for the hsvd and hsvplot commands, respectively. For more details, see the
reference page for hsvdOptions.

These operations use the new functionality in the gram command that computes time-
limited and frequency-limited controllability and observability Gramians. For details, see
the reference pages for gram and the new gramOptions command.

R2016a

1-6

sampleBlock and rsampleBlock commands for sampling
generalized models

The new sampleBlock and rsampleBlock commands sample Control Design
blocks in a generalized model such as a genss or uss model. You can sample tunable
blocks, uncertain blocks, or both. The output is the model array obtained by replacing
the sampled blocks by values you specify (sampleBlock) or randomized values
(rsampleBlock). Some uses of these functions include:

• Perform sensitivity analysis by varying tunable parameters randomly or across a grid.
• Study robustness by varying parameters over an uncertainty range.
•

For more information, see the sampleBlock and rsampleBlock reference pages.

Spectral factorization of LTI models

The new spectralfact command computes the spectral factorization of LTI models.
The spectral factorization of a model H is:
H = G'*S*G,

where S is a symmetric matrix and G is a square, stable, and minimum-phase system
with unit (identity) feedthrough. H must satisfy H = H'. For more information, see the
spectralfact reference page.

Renamed tunable control design blocks

The tunable control design blocks have been renamed. Starting in R2016a, use the
following block names:

Control Design Block New Name

Tunable gain block tunableGain

Fixed-order state-space model with tunable
coefficients

tunableSS

SISO fixed-order transfer function with
tunable coefficients

tunableTF

1-7

Control Design Block New Name

One-degree-of-freedom PID controller with
tunable coefficients

tunablePID

Two-degree-of-freedom PID controller with
tunable coefficients

tunablePID2

Also, several properties of tunable state-space and tunable transfer function blocks have
changed. For more information, see “Functionality being removed or changed” on page
1-7.

The remaining block functionality and properties remain unchanged.

Compatibility Considerations

If your code uses tunable control design blocks, modify your code to use the new block
names. For more information, see “Renamed tunable control design blocks” on page
1-6.

Functionality being removed or changed

Functionality Result Use This Instead Compatibility Considerations

ltiblock.gain,
ltiblock.ss,
ltiblock.tf,
ltiblock.pid, and
ltiblock.pid2

Still
works

tunableGain, tunableSS,
tunableTF, tunablePID,
and tunablePID2
respectively.

For more information, see
“Renamed tunable control
design blocks” on page 1-6.

a, b, c, d, and e properties of
ss and tunableSS models.

Still
works

A, B, C, D, and E respectively. If your code uses any of these
properties, consider modifying
your code to use the new
property names. For more
information, see ss.

num, den, and ioDelay
properties of tf and
tunableTF models.

Still
works

Numerator, Denominator,
and IODelay respectively.

If your code uses any of these
properties, consider modifying
your code to use the new
property names. For more
information, see tf.

R2016a

1-8

Functionality Result Use This Instead Compatibility Considerations

z, p, k, and ioDelay
properties of zero-pole-gain
models

Still
works

Z, P, K, and IODelay
respectively.

If your code uses any of these
properties, consider modifying
your code to use the new
property names. For more
information, see zpk.

R2015b
Version: 9.10

New Features

Bug Fixes

R2015b

2-2

pid2 and pidstd2 Model Objects: Represent, analyze, and use 2-DOF
PID controllers for control design

The new numeric LTI models pid2 and pidstd2 are specialized for modeling two-degree-
of-freedom (2-DOF) PID controllers. These are analogous to the 1-DOF PID models pid
and pidstd.

Use pid2 and pidstd2 to represent a 2-DOF PID controller directly with the PID
parameters, expressed in parallel (pid2) or standard (pidstd2) form. For example,
C2 = pid2(Kp,Ki,Kd,Tf,b,c) creates a 2-DOF PID controller in parallel form with
proportional, integral, and derivative gains Kp, Ki, and Kd, derivative filter time constant
Tf, and setpoint weights b and c. In previous releases, to model a 2-DOF PID controller,
you had to derive the controller's equivalent transfer function (or other model), and could
not directly store the 2-DOF PID parameters.

The pid2 and pidstd2 commands can also convert to PID form any type of LTI object
that represents a 2-DOF PID controller.

This release also includes new functions to help you work with 2-DOF PID controllers.
These functions include:

• getComponents — Extract two SISO control components from a 2-DOF pid2 or
pidstd2 controller.

• make1DOF and make2DOF — Convert 1-DOF pid and pidstd controllers to 2-DOF
pid2 and pidstd2 controllers, and vice versa.

• piddata2 and pidstddata2 — Access parameters of 2-DOF PID controllers.

For more information about working with 2-DOF PID controller objects, see:

• Two-Degree-of-Freedom PID Controllers
• pid2 and pidstd2 function reference pages

2-DOF PID Controller Tuning: Automatically tune the gains of 2-DOF PID
controllers with PID Tuner app and pidtune command

You can now use pidtune and PID Tuner to tune all parameters of a two-degree-of-
freedom (2–DOF) PID controller, including the setpoint weights b and c. When you call
pidtune or open the PID Tuner app with a plant, the software automatically tunes all
parameters of the block to achieve a balance between performance and robustness. When

http://www.mathworks.com/help/releases/R2015b/control/ref/pid2.html
http://www.mathworks.com/help/releases/R2015b/control/ref/pidstd2.html
http://www.mathworks.com/help/releases/R2015b/control/ref/getcomponents.html
http://www.mathworks.com/help/releases/R2015b/control/ref/make1dof.html
http://www.mathworks.com/help/releases/R2015b/control/ref/make2dof.html
http://www.mathworks.com/help/releases/R2015b/control/ref/piddata2.html
http://www.mathworks.com/help/releases/R2015b/control/ref/pidstddata2.html
http://www.mathworks.com/help/releases/R2015b/control/ug/two-degree-of-freedom-2-dof-pid-controllers.html
http://www.mathworks.com/help/releases/R2015b/control/ref/pid2.html
http://www.mathworks.com/help/releases/R2015b/control/ref/pidstd2.html

2-3

you use the Response Time and Transient Behavior sliders to adjust that balance, PID
Tuner adjusts all parameters, including b and c if necessary.

PID Tuner and pidtune also include options for tuning 2-DOF PID controllers with fixed
setpoint weights, such as I-PD (b = 0, c = 0) and P-ID (b = 1, c = 0).

For more information, see:

• Tune 2-DOF PID Controller (PID Tuner)
• Tune 2-DOF PID Controller (Command Line)
• PID Controller Types for Tuning

Save Current Controller Design as Baseline in PID Tuner

In PID Tuner, you can now make the current controller design the baseline controller at
any time. This feature allows to you compare the performance of a PID Tuner controller
design to the performance of controllers obtained by further adjustment of the design.

To make the current PID Tuner design the baseline controller, by click the Export arrow
 and select Save as Baseline.

http://www.mathworks.com/help/releases/R2015b/control/ug/tune-2-dof-pid-controller-pid-tuner.html
http://www.mathworks.com/help/releases/R2015b/control/ug/tune-2-dof-pid-controller-command-line.html
http://www.mathworks.com/help/releases/R2015b/control/ug/pid-controller-types-for-tuning.html

R2015b

2-4

When you do so, the current Tuned response becomes the Baseline response. Further
adjustment of the current design creates a new Tuned response line.

Previously, you could only designate a baseline controller when you opened the PID
Tuner using the syntax pidTuner(sys,C0).

For more information about analyzing controller performance in PID Tuner, see Analyze
Design in PID Tuner.

Change in LPV System block default values for model delays

The default value is now false for Input delay, Output delay, and Internal delay,
in the Fixed Entries tab of LPV System Block Parameters dialog box. A false value
means that model delays are treated as free during simulation.

For information about changing the default values, see the LPV System block reference
page.

http://www.mathworks.com/help/releases/R2015b/control/getstart/analyze-design-in-pid-tuner.html
http://www.mathworks.com/help/releases/R2015b/control/getstart/analyze-design-in-pid-tuner.html
http://www.mathworks.com/help/releases/R2015b/control/ref/lpvsystem.html

2-5

Analysis Plots Wrap Phase in Interval [0º,360º)

By default, response plots that show phase response, such as Bode and Nichols plots,
display the exact phase. You can make these plots wrap the phase into the interval
[0º,360º) by unchecking Unwrap Phase in the plot Property Editor. Previously,
unchecking this option caused the plots to wrap the phase into [–180º,180º). The change
makes it easier to visualize 180º phase crossings on analysis plots.

The default plot behavior (exact or unwrapped phase) is unchanged. The behavior of
commands that return numerical phase response data, such as bode, is also unchanged.
These commands always return the unwrapped phase.

R2015a
Version: 9.9

New Features

Bug Fixes

Compatibility Considerations

R2015a

3-2

Improved input disturbance rejection with the PID tuning algorithm

Controller tuning with the PID Tuner app or the pidtune command now yields better
disturbance rejection by default. For a given target phase margin, the tuning algorithm
selects PID coefficients that achieve a balance between reference tracking and input
disturbance rejection. If you require more disturbance rejection or better reference
tracking than the default algorithm provides, PID Tuner and pidtune have a new
Design Focus option. Use this option to alter the balance that the tuning algorithm
sets between reference tracking and input disturbance rejection. For instance, setting
the design focus to reference tracking improves the reference tracking performance
of the tuned controller, with some cost to disturbance rejection. Similarly, setting the
design focus to input disturbance rejection improves rejection with some cost to reference
tracking. Changing design focus is most effective when tuning PID and PIDF controllers,
rather than controllers with fewer free parameters, such as PI.

To use the Design Focus option in PID Tuner, click Options and select a design focus
from the Focus menu.

3-3

You can still use the Response Time and Transient Behavior sliders to further adjust
the balance between reference tracking and input disturbance rejection.

To specify a design focus for command-line tuning with pidtune, use pidtuneOptions
to set the DesignFocus option. For example, the following commands design a PIDF
controller for the plant G with a crossover frequency of 10 rad/s, specifying reference
tracking as the design focus.

opt = pidtuneOptions('DesignFocus','reference-tracking');

C = pidtune(G,'pidf',10,opt);

For more information about using the design focus option, see:

• Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID
Tuner)

• Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at
Command Line

For more information about using PID Tuner, see Designing PID Controllers with the
PID Tuner. For more information about command-line PID tuning, see PID Controller
Design at the Command Line.

Option to specify code generation settings in LPV System block

You can now specify code generation settings in the LPV System block. You specify these
settings in the Code Generation tab of the block parameters dialog box.

For more information on Linear Parameter-Varying models, see Linear Parameter-
Varying Models.

connect command syntax for specifying analysis point locations

When you interconnect dynamic system models using the connect command, you can now
specify analysis point locations as an input argument to the command. The following
syntax creates a dynamic system model with analysis points by interconnecting multiple
models sys1,sys2,...,sysN:

sys = connect(sys1,sys2,...,sysN,inputs,outputs,APs);

inputs and outputs are string vectors that specify the names of the inputs and outputs
of the interconnected model. APs is a string vector that lists the signal locations at

http://www.mathworks.com/help/releases/R2015a/control/getstart/tune-pid-controller-to-balance-tracking-and-disturbance-rejection.html
http://www.mathworks.com/help/releases/R2015a/control/getstart/tune-pid-controller-to-balance-tracking-and-disturbance-rejection.html
http://www.mathworks.com/help/releases/R2015a/control/getstart/tune-pid-controller-to-favor-reference-tracking-or-disturbance-rejection.html
http://www.mathworks.com/help/releases/R2015a/control/getstart/tune-pid-controller-to-favor-reference-tracking-or-disturbance-rejection.html
http://www.mathworks.com/help/releases/R2015a/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
http://www.mathworks.com/help/releases/R2015a/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
http://www.mathworks.com/help/releases/R2015a/control/ug/pid-controller-design-at-the-command-line.html
http://www.mathworks.com/help/releases/R2015a/control/ug/pid-controller-design-at-the-command-line.html
http://www.mathworks.com/help/releases/R2015a/control/ref/lpvsystem.html
http://www.mathworks.com/help/releases/R2015a/control/ug/linear-parameter-varying-models.html
http://www.mathworks.com/help/releases/R2015a/control/ug/linear-parameter-varying-models.html
http://www.mathworks.com/help/releases/R2015a/control/ref/connect.html

R2015a

3-4

which to insert analysis points. The software automatically inserts an AnalysisPoint
block with channels corresponding to these locations. Previously, you had to create
AnalysisPoint blocks separately and include them in the list of models to connect.

For example, consider the following control system.

Use connect to build this system with an analysis point at the plant input, u.

C.InputName = 'e'; C.OutputName = 'u';

G.InputName = 'u'; G.OutputName = 'y';

Sum = sumblk('e = r-y');

T = connect(G,C,Sum,'r','y','u');

These commands return a generalized state-space (genss) model with one
AnalysisPoint block. You can use the analysis point, for example, to extract the open-
loop response of the system at u:

L = getLoopTransfer(T,'u',-1);

For a more detailed example, see Mark Analysis Points in Closed-Loop Models. For more
information about using analysis points in dynamic system models, see the AnalysisPoint
reference page.

LTI Viewer renamed to Linear System Analyzer

The LTI Viewer app is now called Linear System Analyzer. The functionality of the app
is unchanged.

You can access Linear System Analyzer in two ways:

• From the MATLAB desktop, in the Apps tab, in the Control System Design and
Analysis section, click Linear System Analyzer.

http://www.mathworks.com/help/releases/R2015a/control/ug/control-system-with-automatically-inserted-analysis-points.html
http://www.mathworks.com/help/releases/R2015a/control/ref/analysispoint.html

3-5

• From the MATLAB command line, use the linearSystemAnalyzer function.
Previously, this function was called ltiview. Using ltiview to open Linear System
Analyzer does not generate an error in this release, but the function might be
removed in a future release.

Compatibility Considerations

If you have scripts or functions that use ltiview, consider replacing those calls with
linearSystemAnalyzer.

sisotool function renamed to controlSystemDesigner

The sisotool function is now called controlSystemDesigner. The
controlSystemDesigner opens the SISO Design Tool. You can also access SISO
Design Tool from MATLAB desktop. In the Apps tab, in the Control System Design
and Analysis section, click Control System Designer.

Using sisotool to open SISO Design Tool does not generate an error in this release, but
the function might be removed in a future release.

Compatibility Considerations

If you have scripts or functions that use sisotool, consider replacing those calls with
controlSystemDesigner.

getBlockValue returns all block values in structure

A new syntax of the getBlockValue command now returns the current values of all
Control Design Blocks of a generalized model (genss) in a structure. The following
syntax returns a structure, S, whose field names are the names of the blocks in the
genss model M. The values of the fields are numerical LTI models or numerical values
equal to the current values of the corresponding Control Design Blocks.

S = getBlockValue(M)

This syntax lets you transfer the block values from one generalized model to another
model that uses the same Control Design Blocks, as follows:

S = getBlockValue(M1);

http://www.mathworks.com/help/releases/R2015a/control/ref/linearsystemanalyzer.html
http://www.mathworks.com/help/releases/R2015a/control/ref/controlsystemdesigner.html

R2015a

3-6

setBlockValue(M2,S);

For more information, see the getBlockValue reference page.

Compatibility Considerations

Previously, the syntax getBlockValue(M) returned the current values of the blocks of M
as a vector list:

[Val1,Val2,...,ValN] = getBlockValue(M)

Now, using this syntax causes an error. You can still obtain block values in a list by
specifying the block names as input arguments, as follows.

[Val1,Val2,...,ValN] = getBlockValue(M,Blkname1,Blkname2,...,BlknameN)

Functionality being removed or changed

Functionality What
Happens
When You
Use This
Functionality?

Use This Instead Compatibility Considerations

[Val1,Val2,...] =

getBlockValue(M)

Error S = getBlockValue(M) getBlockValue(M) now
returns a structure containing
current values of all blocks.
Update scripts and functions
that use getBlockValue(M)
to use output structure.

ltiview function Still works linearSystemAnalyzer Consider replacing ltiview
with linearSystemAnalyzer
in scripts and functions.

sisotool function Still works controlSystemDesigner Consider replacing
sisotool with
controlSystemDesigner

http://www.mathworks.com/help/releases/R2015a/control/ref/getblockvalue.html

R2014b
Version: 9.8

New Features

Bug Fixes

Compatibility Considerations

R2014b

4-2

LPV System block for modeling and simulating linear parameter-varying
systems

This release introduces the LPV System block. You use this block to represent Linear
Parameter Varying (LPV) systems in Simulink.

An LPV system is a linear state-space system whose dynamics vary as a function of
certain time-varying parameters called the scheduling parameters. Mathematically, an
LPV system is represented as:

dx t A p x t B p u t

y t C p x t D p u t

x x

() = () () + () ()

() = () () + () ()

() =0
0

where

• u(t) are the inputs
• y(t) the outputs
• x(t) are the model states with initial value x0
• dx t() is the state derivative vector &x for continuous-time systems and the state

update vector x t T+()D for discrete-time systems. ΔT is the sample time.

• A(p), B(p), C(p) and D(p) are the state-space matrices parameterized by the
scheduling parameter vector p.

• The parameters p = p(t) are measurable functions of the inputs and the states of
the model. They can be a scalar quantity or a vector of several parameters. The set
of scheduling parameters define the scheduling space over which the LPV model is
defined.

The linear system can be extended to contain offsets in the system’s states, input,
and output signals. Mathematically, the LPV system is represented by the following
equations:

dx t A p x t B p u t dx p A p x p B p u p

y t C p

() = () () + () () + () - () () -()
() = ()

() ()

xx t D p u t y p C p x p D p u p

x x

() + () () + () - () () -()

() =

() ()

0 0

http://www.mathworks.com/help/releases/R2014b/control/ref/lpvsystem.html

4-3

dx p x p u p y p() () () (), , , are the offsets in the values of dx(t), x(t), u(t) and y(t) at
a given parameter value p = p(t).

LPV system can be thought of as a first-order approximation of a nonlinear system over
a grid of scheduling parameter values. For example, you can linearize a Simulink model
between a given input and output ports over a grid of equilibrium operating conditions.
The values of the model inputs, outputs and state values at each operating point define
the offsets, while the linear state-space models obtained by linearization define the state-
space data. The LPV system thus generated can work as a proxy for the original model
for facilitating faster simulations and control system design. For more information, see
Linear Parameter-Varying Models.

The LPV System block accepts the state-space matrices and offsets over a grid of
scheduling parameter values. The state-space matrices must be specified as an array
of model objects. The SamplingGrid property of the array defines the scheduling
parameters for the LPV system. For examples of using this block, see:

• Using LTI Arrays for Simulating Multi-Mode Dynamics
• Approximating Nonlinear Behavior using an Array of LTI Systems
• LPV Approximation of a Boost Converter Model

Kalman Filter block for estimating states of linear time-invariant and
linear time-varying systems

Use the Kalman Filter block to estimate the states of linear time-invariant and linear
time-varying systems online. The states are estimated as new data becomes available
during the operation of the system. The system can be continuous-time or discrete-time.
You can generate code for this block using code generation products such as Simulink
Coder™.

You can access this block from the Control System Toolbox library. For an example of
using this block, see State Estimation Using Time-Varying Kalman Filter.

AnalysisPoint Control Design Block for Marking Points of Interest for
Linear Analysis

The new AnalysisPoint block is a unit-gain Control Design Block that you can insert
anywhere in a control system model to mark points of interest for linear analysis and

http://www.mathworks.com/help/releases/R2014b/control/ug/linear-parameter-varying-models.html
http://www.mathworks.com/help/releases/R2014b/control/ug/model-arrays.html#bsvid1p
http://www.mathworks.com/help/releases/R2014b/control/ug/model-arrays.html#bsvid1p
http://www.mathworks.com/help/releases/R2014b/control/ug/using-lti-arrays-for-simulating-multi-mode-dynamics.html
http://www.mathworks.com/help/releases/R2014b/slcontrol/ug/approximating-nonlinear-behavior-using-an-array-of-lti-systems.html
http://www.mathworks.com/help/releases/R2014b/slcontrol/ug/lpv-approximation-of-a-boost-converter-model.html
http://www.mathworks.com/help/releases/R2014b/control/ref/kalmanfilter.html
http://www.mathworks.com/help/releases/R2014b/control/getstart/estimating-states-of-time-varying-systems-using-kalman-filters.html

R2014b

4-4

tuning. Incorporate AnalysisPoint blocks into generalized state-space (genss)
control system models by interconnecting them with numeric LTI models and other
Control Design Blocks. When you mark a location in a control system model with an
AnalysisPoint block, you can use that location for linear analysis tasks, such as
extracting responses using getIOTransfer or getLoopTransfer. You can also use
such locations to specify design requirements for control system tuning using systune or
Control System Tuner (requires Robust Control Toolbox software).

For more information about using AnalysisPoint blocks, see:

• AnalysisPoint reference page
• Control System with Multi-Channel Analysis Points
• Managing Signals in Control System Analysis and Design

Compatibility Considerations

AnalysisPoint replaces the loopswitch Control Design Block.

Models that contain loopswitch blocks continue to work, for backward compatibility.
However, it is recommended that you use AnalysisPoint blocks in new models. If you
have scripts or functions that use loopswitch blocks, consider updating them to use
AnalysisPoint instead.

For documentation of loopswitch, see loopswitch in the R2014a documentation.

pidtool function renamed to pidTuner

The pidtool function is now called pidTuner. To open PID Tuner, use the pidTuner
command or, in the MATLAB desktop Apps tab, click PID Tuner.

Using pidtool does not generate an error in this release, but the function may be
removed in a future release.

Compatibility Considerations

If you have scripts that use pidtool, consider replacing those calls with pidTuner.

http://www.mathworks.com/help/releases/R2014b/control/ref/analysispoint.html
http://www.mathworks.com/help/releases/R2014b/control/ug/control-system-with-multi-channel-analysis-points.html
http://www.mathworks.com/help/releases/R2014b/control/ug/managing-signals-in-analysis-and-design.html
http://www.mathworks.com/help/releases/R2014a/control/ref/loopswitch.html
http://www.mathworks.com/help/releases/R2014b/control/ref/pidtuner.html

4-5

getSwitches function renamed to getPoints

The getSwitches function is now called getPoints to match the renaming of
loopswitch to AnalysisPoint. Using getSwitches does not generate an error in this
release, but the function may be removed in a future release.

Compatibility Considerations

If you have scripts or functions that use getSwitches, consider replacing those calls
with getPoints.

Functionality being removed or changed

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

loopswitch Control
Design Block

Still works AnalysisPoint Consider replacing
loopswitch with
AnalysisPoint

in scripts and
functions.

getSwitches

function
Returns
loopswitch and
AnalysisPoint

blocks in model

getPoints Consider replacing
getSwitches

with getPoints
in scripts and
functions.

pidtool function Still works pidTuner Consider replacing
pidtool with
pidTuner in scripts.

http://www.mathworks.com/help/releases/R2014b/control/ref/getpoints.html

R2014a
Version: 9.7

New Features

Bug Fixes

Compatibility Considerations

R2014a

5-2

Redesigned PID Tuner app for improved PID tuning workflow

The redesigned PID Tuner streamlines workflows for interactively tuning PID controllers
for reference tracking and disturbance rejection.

To access the PID Tuner, use the pidtool command. For example, to tune a PI
controller for an LTI model, G:

pidtool(G,'PI')

For more information about the PID Tuner, see Designing PID Controllers with the PID
Tuner.

PID controller tuning using system identification to model the plant
from measured input-output data in the PID Tuner app (with System
Identification Toolbox)

If you have System Identification Toolbox™ software, you can use PID Tuner to fit a
linear model to the measured SISO response data from your system and tune a PID
controller for the resulting model. For example, if you want to design a PID controller
for a manufacturing process, you can start with response data from a bump test on your
system.

PID Tuner uses system identification to estimate an LTI model from the response data.
You can interactively adjust the identified parameters to obtain an LTI model with a
response that fits your response data. PID Tuner automatically tunes a PID controller
for the estimated model. You can then interactively adjust the performance of the tuned
control system, and save the estimated plant and tuned controller.

For an example, see Interactively Estimate Plant Parameters from Response Data.

freqsep function for decomposing a linear system into fast dynamics
and slow dynamics

Use the new freqsep command for separating numeric LTI models into fast and slow
components. freqsep allows you to specify the cutoff frequency about which the model is
decomposed. The slow component contains poles with natural frequency below the cutoff
frequency. The fast component contains poles at or above the cutoff.

For more information, see the freqsep reference page.

http://www.mathworks.com/help/releases/R2014a/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
http://www.mathworks.com/help/releases/R2014a/control/getstart/designing-pid-controllers-with-the-pid-tuner-gui.html
http://www.mathworks.com/help/releases/R2014a/control/getstart/interactively-estimate-plant-parameters-from-response-data.html
http://www.mathworks.com/help/releases/R2014a/control/ref/freqsep.html

5-3

damp command display includes time constant information

When you call the damp command with no output arguments, the display now includes
the time constant for each pole. The time constant is calculated as follows:

t
w z

=
1

n

.

ωn is the natural frequency of the pole, and ζ is its damping ratio.

Compatibility Considerations

For a discrete-time system with unspecified sample time (Ts = -1), damp now calculates
the natural frequency and damping ratio by assuming Ts = 1. Previously, the software
returned [] for the natural frequency and damping ratio of such systems.

damp returns outputs in order of increasing natural frequency. Therefore, this change
can result in reordered poles for systems with unspecified sample times.

For more information on the outputs, see the damp reference page.

http://www.mathworks.com/help/releases/R2014a/control/ref/damp.html

R2013b
Version: 9.6

New Features

Bug Fixes

Compatibility Considerations

R2013b

6-2

SamplingGrid property for tracking dependence of array of sampled
models on variable values

In Control System Toolbox, you can derive arrays of numeric or generalized LTI models
by sampling one or more independent variables. The new SamplingGrid property of LTI
models tracks the variable values associated with each model in such an array.

Set this property to a structure whose fields are the names of the sampling variables and
contain the sampled variable values associated with each model. All sampling variables
should be numeric and scalar valued, and all arrays of sampled values should match the
dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking
snapshots of a linear time-varying system at times t = 0:10. The following code stores
the time samples with the linear models.

 sys.SamplingGrid = struct('time',0:10)

For an additional examples, see:

• Array With Variations in Two Parameters
• Sample a Tunable (Parametric) Model for Parameter Studies

Option to retain unconnected states when interconnecting models using
connect command

By default, the connect command discards states that do not contribute to the dynamics
in the path between the inputs and outputs of the interconnected system. You can now
optionally retain such unconnected states. This option can be useful, for example, when
you want to compute the interconnected system response from known initial state values
of the components.

To instruct connect to retain unconnected states, use the new connectOptions
command with the existing connect command.

For more information, see the connectOptions reference page.

http://www.mathworks.com/help/releases/R2013b/control/ug/model-arrays.html#bsu3spo
http://www.mathworks.com/help/releases/R2013b/control/ug/model-arrays.html#bsx_oix
http://www.mathworks.com/help/releases/R2013b/control/ref/connectoptions.html

6-3

connect command always returns state-space or frequency response
data model

The connect command now always returns a state-space model, such as an ss, genss,
or uss model, unless one or more of the input models is a frequency response data model.
In that case, connect returns a frequency response data model, such as an frd or
genfrd model.

For more information, see the connect reference page.

Compatibility Considerations

In previous releases, connect returned a tf or zpk model when all input models were
tf or zpk models. Therefore, connect might now return state-space models in cases
where it previously returned tf or zpk models.

updateSystem command for updating dynamic system data in a
response plot

The new updateSystem command replaces the system data used to compute a
response plot with data derived from a different dynamic system, and updates the plot.
updateSystem is useful, for example, to cause a plot in a GUI to update in response to
interactive input.

For more information, see:

• updateSystem reference page
• Build GUI With Interactive Plot Updates

getLoopID renamed to getSwitches

The getLoopID function is now called getSwitches to more clearly reflect the purpose
of the function. Using getLoopID does not generate an error in this release, but the
function may be removed in a future release.

Compatibility Considerations

If you have scripts or functions that use getLoopID, consider replacing those calls with
getSwitches.

http://www.mathworks.com/help/releases/R2013b/control/ref/connect.html
http://www.mathworks.com/help/releases/R2013b/control/ref/updatesystem.html
http://www.mathworks.com/help/releases/R2013b/control/ug/build-app-with-interactive-plot-updates.html
http://www.mathworks.com/help/releases/R2013b/control/ref/getswitches.html

R2013b

6-4

LoopID property of loopswitch renamed to Location

The LoopID property of the loopswitch model component is now called Location to more
clearly reflect the purpose of the property. Using LoopID does not generate an error in
this release, but the name may be removed in a future release.

Compatibility Considerations

If you have scripts or functions that use the LoopID property, consider updating your
code to use Location instead.

http://www.mathworks.com/help/releases/R2013b/control/ref/loopswitch.html

R2013a
Version: 9.5

New Features

Bug Fixes

R2013a

7-2

Transient behavior slider for PID Tuner, increasing control over reference
tracking and disturbance rejection performance

The PID Tuner now has a Transient behavior slider for emphasizing either reference
tracking or disturbance rejection. When you open the PID Tuner, the tool starts in the
Time domain design mode, displaying a step plot of the reference tracking response. The
new Transient behavior slider is beneath the Response time slider.

7-3

You can use the Transient behavior slider when:

R2013a

7-4

• The tuned system’s disturbance rejection response is too sluggish for your
requirements. In this case, try moving the Transient behavior slider to the left to
make the controller more aggressive at disturbance rejection.

• The tuned system’s reference tracking response has too much overshoot for your
requirements. In this case, try moving the Transient behavior slider to the right to
increase controller robustness and reduce overshoot.

In Frequency domain design mode, the PID Tuner has Bandwidth and Phase
margin sliders. These sliders are the frequency-domain equivalents of the Response
time and Transient behavior sliders, respectively.

R2012b
Version: 9.4

New Features

Bug Fixes

Compatibility Considerations

R2012b

8-2

ltiblock.pid2 and loopswitch objects for tuning two-degree-of-
freedom PID controllers and marking loop opening sites for open-loop
requirements

New Control Design Blocks allow you to specify more control structures and more types
of constraints for fixed-structure control system tuning in MATLAB:

• ltiblock.pid2 — Tunable two-degree-of-freedom PID controller
• loopswitch — Control Design Block for specifying feedback loop opening locations in

a tunable genss model of a control system

You can use these Control Design Blocks to build control systems for tuning with Robust
Control Toolbox tuning commands such as systune and looptune. For more information,
see the ltiblock.pid2 and loopswitch reference pages.

Commands for obtaining open-loop responses, closed-loop responses,
and current values of tunable components from control system models

New commands allow you to compute open-loop and closed-loop responses from a
Generalized LTI model representing a control system.

• getLoopTransfer — Compute point-to-point open-loop response of a Generalized LTI
model of a control system, at a loop-opening site defined by a loopswitch block. The
new command getLoopID returns a list of such loop-opening sites.

• getIOTransfer — Extract the closed-loop response from a specified input to a specified
output of a control system.

These commands are particularly useful for validating the response functions of control
systems tuned using Robust Control Toolbox tuning commands such as systune.

Additionally, the new showTunable command displays the current value of tunable
components in a generalized LTI model of a control system. This command is useful for
querying tuned parameter values of control systems tuned using Robust Control Toolbox
tuning commands such as systune.

For more information, see the reference pages for these new commands and the following
topics:

• Generalized Models

http://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/looptune.html
http://www.mathworks.com/help/releases/R2012b/control/ref/ltiblock.pid2.html
http://www.mathworks.com/help/releases/R2012b/control/ref/loopswitch.html
http://www.mathworks.com/help/releases/R2012b/control/ref/getlooptransfer.html
http://www.mathworks.com/help/releases/R2012b/control/ref/getloopid.html
http://www.mathworks.com/help/releases/R2012b/control/ref/getiotransfer.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
http://www.mathworks.com/help/releases/R2012b/control/ref/showtunable.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
http://www.mathworks.com/help/releases/R2012b/control/ug/generalized-matrices-and-models.html

8-3

• Models with Tunable Coefficients

Option for elementwise operation of model query commands on model
arrays

The new 'elem' flag causes elementwise operation on model arrays of the model query
commands:

• hasInternalDelay

• hasdelay
• isstatic

• isreal

• isfinite

• isproper
• isstable

For example, for an array, sysarray, of dynamic system models,

B = hasdelay(sysarray,'elem');

returns a logical array. B of the same size as sysarray indicating whether the
corresponding model in sysarray contains a time delay. Without the 'elem' flag,

B = hasdelay(sysarray);

returns a scalar logical value that is equal to 1 if any entry in sysarray contains a time
delay.

Compatibility Considerations

isfinite and isstable now return a scalar logical value when invoked without the
'elem' flag. Previously, isfinite and isstable returned a logical array by default.

If you have scripts or functions that use isfinite(sysarray) or
isstable(sysarray), replace those calls with isfinite(sysarray,'elem') or
isstable(sysarray,'elem') to perform an elementwise query and obtain a logical
array.

http://www.mathworks.com/help/releases/R2012b/control/ug/models-with-tunable-coefficients.html
http://www.mathworks.com/help/releases/R2012b/control/ref/hasdelay.html
http://www.mathworks.com/help/releases/R2012b/control/ref/isproper.html
http://www.mathworks.com/help/releases/R2012b/control/ref/isstable.html

R2012a
Version: 9.3

New Features

Compatibility Considerations

R2012a

9-2

Frequency Analysis Commands for Calculating Peak Gain and Finding
Gain-Crossover Frequencies

Control System Toolbox software includes two new frequency analysis commands:

• getPeakGain — Peak gain of frequency response of a dynamic system model
• getGainCrossover — Frequencies at which system gain crosses a specified gain

level

For more information, see the getPeakGain and getGainCrossover reference pages.

These functions use the SLICOT library of numerical algorithms. For more information
about the SLICOT library, see http://slicot.org.

Specify Target Crossover Frequency as Input to pidtune

A new syntax for pidtune lets you specify a target crossover frequency directly as an
input argument. For example, the following command designs a PI controller, C, for
a plant model sys. The command also specifies a target value wc for the 0 dB gain
crossover frequency of the open-loop response L = sys*C.

C = pidtune(sys,'pi',wc);

Previously, you had to use pidtuneOptions to specify a target crossover frequency.

For more information, see the pidtune reference page.

Rescaled Impulse Response and Impulse-Invariant Time Domain
Conversion

For discrete-time dynamic system models, the input signal applied by impulse is now
a unit area pulse of length Ts and height 1/Ts. Ts is the sampling time of the discrete-
time system. Previously, impulse applied a pulse of length Ts and unit height.

Compatibility Considerations

Results of this change include:

• The amplitude of the impulse response calculated by impulse and impulseplot is
scaled by 1/Ts relative to previous versions.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getpeakgain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getgaincrossover.html
http://slicot.org/
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtune.html

9-3

• Discretization using the impulse-invariant ('impulse') method of c2d returns a
model that is scaled by Ts compared to previous releases. This scaling ensures a
close match between the frequency responses of the continuous-time model and the
impulse-invariant discretization as Ts approaches zero (for strictly proper models). In
previous releases, the frequency responses differed by a factor of Ts.

First-Order Hold Method for d2c

The d2c command now supports the first-order hold (FOH) method for converting a
discrete-time dynamic system model to continuous time. The FOH method converts by
performing linear interpolation of the inputs, assuming the control inputs are piecewise
linear over the sampling period. For more information about using this method, see the
d2c reference page and Continuous-Discrete Conversion Methods.

tzero Computes Invariant Zeros and Transmission Zeros

The tzero command computes the invariant zeros of SISO and MIMO dynamic system
models. For minimal realizations, tzero computes transmission zeros. tzero also
returns the normal rank of the transfer function of the system. For more information, see
the tzero reference page.

Models Created With System Identification Toolbox Can Be Used Directly
With Control System Toolbox Functions

Identified linear models that you create using System Identification Toolbox software
can now be used directly with Control System Toolbox analysis and compensator design
commands. In prior releases, doing so required conversion to Control System Toolbox LTI
model types.

Identified linear models include idfrd, idss, idproc, idtf, idgrey and idpoly models.

Identified linear models can be used directly with:

• Any Control System Toolbox or Robust Control Toolbox functions that operate on
dynamic systems, including:

• Response plots — nichols, margin, and rlocus
• Model simplification — pade, balred and minreal
• System interconnections — series, parallel, feedback and connect

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/d2c.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs08hih.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/tzero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idfrd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idproc.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idtf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idgrey.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/nichols.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/margin.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/rlocus.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pade.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/minreal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/series.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/parallel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/feedback.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/connect.html

R2012a

9-4

For a complete list of these functions, enter:

methods('DynamicSystem')

• Analysis and design tools such as ltiview, sisotool and pidtool.
• The LTI System block in Simulink models.

Functionality Being Removed or Changed

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

impulse(sys) and
impulseplot(sys), for
discrete-time sys

Still works. N/A Amplitude of response
is scaled by 1/Ts
compared to previous
versions. Ts is sampling
time of sys.

c2d(sys,Ts,'impulse') Still works. N/A Resulting discretized
model is scaled by Ts
compared to previous
releases.

[y,t] =

impulse(sys,Tfinal)

[y,t] =

step(sys,Tfinal)

[y,t,x] =

initial(sys,Tfinal)

For discrete-
time sys with
undefined sample
time (Ts=-1),
Tfinal is
interpreted as
the number of
sampling periods
to simulate.

N/A Expect the number of
simulation data points
to be Tfinal + 1
instead of Tfinal.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiview.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/sisotool.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtool.html

R2011b
Version: 9.2

New Features

Compatibility Considerations

R2011b

10-2

Formula-Based Specification of Summing Junctions and Vector Signal
Naming for sumblk and connect

You can now use formula strings to specify the behavior of summing junctions with
sumblk. For example, to create a summing junction, S, that takes the difference between
signals r and y to produce signal e, enter the following command:

S = sumblk('e = r-y');

Additionally, both sumblk and connect now support vector-based signal naming for
interconnecting multi-input, multi-output (MIMO) models. For more information, see the
sumblk and connect reference pages.

Commands for Interacting with Control Design Blocks in Generalized LTI
Models

The following new commands allow you to examine and set the values of Control Design
Blocks in Generalized LTI Models:

• getValue — Get nominal value of Generalized Model (replaces getNominal)
• setValue — Modify value of Control Design Block
• getBlockValue — Get nominal value of Control Design Block in Generalized Model
• setBlockValue — Set value of Control Design Block in Generalized Model
• showBlockValue — Display nominal values of Control Design Blocks in Generalized

Model

For more information about these commands, see the reference pages for each command.

Functionality Being Removed or Changed

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

delay2z Errors absorbDelay Replace delay2z with
absorbDelay.

getNominal Errors getValue Replace getNominal
with getValue.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/sumblk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/connect.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmtrr
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmtrr
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmvii
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getvalue.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/setvalue.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getblockvalue.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/setblockvalue.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/showblockvalue.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/absorbdelay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getvalue.html

10-3

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

Scale and Info properties
of realp parameter

Errors None None

sumblk('a','b','c','+-')Still works sumblk('a=b-c') Use new formula-based
syntax for sumblk.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/realp.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/sumblk.html

R2011a
Version: 9.1

New Features

Compatibility Considerations

R2011a

11-2

New Model Objects for Representing Tunable Parameters and Systems
with Tunable Components

Control System Toolbox includes new model objects that you can use to represent
systems with tunable components. You can use these models for parameter studies or
controller synthesis using hinfstruct (requires Robust Control Toolbox). The new
model types include:

• Control Design Blocks—Parametric components that are the building blocks for
constructing tunable models of control systems. Control Design Blocks include:

• realp—Tunable real parameter
• ltiblock.gain—Tunable static gain block
• ltiblock.tf—Fixed-order SISO transfer function with tunable coefficients
• ltiblock.ss—Fixed-order state-space model with tunable coefficients
• ltiblock.pid—One-degree-of-freedom PID controller with tunable coefficients

• Generalized Matrices—Matrices that include parametric (tunable) values.
Generalized matrices are genmat models.

• Generalized and Uncertain LTI Models—Models representing systems that have both
fixed and tunable coefficients. Generalized LTI models include:

• genss—Generalized state-space model
• genfrd—Generalized frequency response data model

These models arise from interconnections between numeric LTI models (such as tf
, ss, or frd) and Control Design Blocks. You can also create genss models by using
the tf or ss commands with one or more realp or genmat inputs.

This release also adds new functions for working with generalized models:

• getNominal—Nominal value of generalized model
• replaceBlock—Replace Control Design Blocks in generalized model
• nblocks—Number of blocks in generalized model
• isParametric — Determine if model has tunable blocks
• getLFTModel—Decompose generalized model

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmtrr
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/realp.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.tf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.ss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.pid.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxn4a5
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genmat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmvii
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genfrd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/replaceblock.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/nblocks.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/isparametric.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getlftmodel.html

11-3

For more information about the new model types and about modeling systems that
contain tunable coefficients, see the following in the Control System Toolbox User's
Guide:

• Types of Model Objects
• Models with Tunable Coefficients

New Time and Frequency Units for Models and Response Plots

All linear model objects now have a TimeUnit property for specifying unit of the time
variable, time delays in continuous-time models, and sampling time in discrete-time
models. The default time units is seconds. You can specify the time units, for example, as
hours. See Specify Model Time Units for examples.

Frequency-response data (frd and genfrd) models also have a new FrequencyUnit
property for specifying units of the frequency vector. The default frequency units is rad/
TimeUnit, where TimeUnit is the system time units. You can specify the units, for
example as KHz, independently of the system time units. See Specify Frequency Units of
Frequency-Response Data Model for examples. If your code uses the Units property of
frequency-response data models, it continues to work as before.

See the model reference pages for available time and frequency units options.

Changing the TimeUnit and FrequencyUnit properties changes the overall system
behavior. If you want to simply change the time and frequency units without modifying
system behavior, use chgTimeUnit and chgFreqUnit, respectively.

The time and frequency units of the model appear on the response plots by default. For
multiple systems, the units of the first system are used. You can change the units of the
time and frequency axes:

• Graphically, using the following editors:

• Toolbox Preferences Editor
• LTI Viewer Preferences Editor
• Graphical Tuning Window Preferences Editor
• Property Editor of individual plots

• Programmatically, by setting the following properties of plots:

• TimeUnits for time-domain plots using timeoptions

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_3cl7.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsuyqal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsst00x-1.html#bsva1a6
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bszl5vg.html#bswataq
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/frd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genfrd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bszl5vg.html#bsxz3se-1
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bszl5vg.html#bsxz3se-1
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/chgtimeunit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/chgfrequnit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f4-1019726.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f5-1022832.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f5-1023927.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f3-1026485.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/timeoptions.html

R2011a

11-4

• FreqUnits for frequency-domain plots using, for example, bodeoptions

Discrete-Time PID Controller Objects Have Stable Derivative Filter Pole

New requirements for creating pid and pidstd controller objects ensure that the
derivative filter pole is always stable.

• For a discrete-time pid controller with a derivative filter (Tf≠ 0) and Dformula set to
'ForwardEuler', the sampling time Ts must be less than 2*Tf.

• For a discrete-time pidstd controller with a derivative filter (N≠ Inf) and Dformula
set to 'ForwardEuler', the sampling time Ts must be less than 2*Td/N.

• The Trapezoidal value for DFormula is not available for a discrete-time pid or
pidstd controller with no derivative filter (Tf = 0 or N = Inf).

Compatibility Considerations

On loading pid or pidstd controllers saved under previous versions, the software
changes certain properties of controllers that do not have stable derivative filter poles.

• For a discrete-time pid controller with a derivative filter (Tf≠ 0), Dformula set to
'ForwardEuler', and sampling time Ts ≥ 2*Tf, the derivative filter time is reset to
Tf = Ts.

• For a discrete-time pidstd controller with a derivative filter (N≠ Inf), Dformula set
to 'ForwardEuler', the sampling time Ts ≥ 2*Td/N, the derivative filter constant is
reset to N = Td/Ts.

• For a discrete-time pid or pidstd controller with no derivative filter and DFormula
= 'Trapezoidal', the derivative filter integrator formula is reset to DFormula =
'ForwardEuler'.

The software issues a warning when it changes any of these values. If you receive such
a warning, validate your controller to ensure that the new values achieve the desired
performance.

New Variable q^–1 for Expressing Discrete-Time Transfer Functions

You can now express discrete-time tf and zpk models in terms of the inverse shift
operator q^-1. The variable q^-1 is equivalent to z^-1.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/bodeoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pid.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidstd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/tf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/zpk.html

11-5

Note: This new definition is consistent with the System Identification Toolbox definition
of q^-1.

Use the new variable by setting the Variable property of a tf or zpk model to q^-1.
For example, entering:

 H = tf([1 2 3],[5 6 7],0.1,'Variable','q^-1')

creates the following discrete-time transfer function:

Transfer function:

1 + 2 q^-1 + 3 q^-2

5 + 6 q^-1 + 7 q^-2

Sampling time (seconds): 0.1

When you set Variable to q^-1, tf interprets the numerator and denominator vectors
as ascending powers of q^-1.

For more information, see the tf and zpk reference pages.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/tf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/zpk.html

R2010b
Version: 9.0

New Features

Compatibility Considerations

R2010b

12-2

New Commands and GUI for Modeling and Tuning PID Controllers

This release introduces specialized tools for modeling and designing PID controllers.

PID Controller Design with the New PID Tuner GUI

The new PID Tuner GUI lets you interactively tune a PID controller for your required
response characteristics. Using the GUI, you can adjust and analyze your controller's
performance with response plots, such as reference tracking, load disturbance rejection,
and controller effort, in both time and frequency domains.

The PID Tuner supports all types of SISO plant models, including:

• Continuous- or discrete-time plant models
• Stable, unstable, or integrating plant models
• Plant models that include I/O time delays or internal time delay

For more information about using PID Tuner, see:

• Designing PID Controllers in the Control System Toolbox Getting Started Guide
• The new demo Designing PID for Disturbance Rejection with PID Tuner

PID Controller Design with the New pidtune Command

The new pidtune command lets you tune PID controller gains at the command line.

pidtune automatically tunes the PID gains to balance performance (response time) and
robustness (stability margins). You can specify your own response time and phase margin
targets using the new pidtuneOptions command.

pidtune supports all types of SISO plant models, including:

• Continuous- or discrete-time plant models.
• Stable, unstable, or integrating plant models.
• Plant models that include I/O time delays or internal time delays.
• Arrays of plant models. If sys is an array, pidtune designs a separate controller for

each plant in the array.

For additional information, see:

• The pidtune and pidtuneOptions reference pages

http://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/bsorq4s-2.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtune.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtuneoptions.html

12-3

• The new Control System Toolbox demo Designing Cascade Control System with PI
Controllers

Modeling PID Controllers in Parallel Form or Standard Form

The new LTI model objects pid and pidstd are specialized for modeling PID controllers.

With pid and pidstd you can model a PID controller directly with the PID parameters,
expressed in parallel (pid) or standard (pidstd) form. The pid and pidstd commands
can also convert to PID form any type of LTI object that represents a PID controller.

Previously, to model a PID controller, you had to derive the controller's equivalent
transfer function (or other model), and could not directly store the PID parameters.

For additional information, see the pid and pidstd reference pages

Improved PID Tuning Options in SISO Design Tool

This release includes improvements to the PID Tuning options in the Automated Tuning
pane of SISO Design Tool.

In addition to the Robust Response Time tuning algorithm, SISO Design Tool offers a
collection of classical design formulas, including the following:

• Approximate M-Constrained Integral Gain Optimization (MIGO) Frequency Response
• Approximate MIGO Step Response
• Chien-Hrones-Reswick
• Skogestad Internal Model Control (IMC)
• Ziegler-Nichols Frequency Response
• Ziegler-Nichols Step Response

For information about using SISO Design Tool, see SISO Design Tool in the Control
System Toolbox User's Guide. For specific information about the automatic PID Tuning
options in SISO Design Tool, see PID Tuning in the Control System Toolbox User's Guide.

Ability to Analyze a Controller Design for Multiple Models Simultaneously
in SISO Design Tool

You can now analyze a controller design for multiple models simultaneously using the
SISO Design Tool. This feature helps you analyze whether the controller satisfies design
requirements on a system whose exact dynamics are not known and may vary.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pid.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidstd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-978158.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1034877

R2010b

12-4

System dynamics can vary because of parameter variations or different operating
conditions. You represent variations in system dynamics of the plant (G), sensor (H),
or both in a feedback structure using arrays of LTI models. Then, design a controller
for a nominal model in the array and analyze that the controller satisfies the design
requirements on the remaining models using the design and analysis plots. For more
information, see:

• Control Design Analysis of Multiple Models in the Control System Toolbox
documentation.

• Compensator Design for a Set of Plant Models demo.
• Reference Tracking of a DC Motor with Parameter Variations demo in Simulink

Control Design software.

Change in Output of repsys Command

The output of the repsys command when called with a single dimension argument has
changed.

In prior versions, the output of repsys(sys,N) was the same as that of
append(sys,...,sys).

Now, repsys(sys,N) returns the same result as repsys(sys,[N N]).

The results of other syntaxes for repsys have not changed.

See the repsys and append reference pages for more information.

Compatibility Considerations

Code that depends upon the previous result of repsys(sys,N) no longer returns that
result. To obtain the previous result, replace repsys(sys,N) with sys*eye(N).

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsu3soz.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/bsnykqg.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/repsys.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/repsys.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/append.html

R2010a
Version: 8.5

New Features

Compatibility Considerations

R2010a

13-2

Enhanced c2d Command to Approximate Fractional Time Delays in Tustin
and Matched Discretization Methods

The c2d command can now approximate fractional time delays when discretizing linear
models with the tustin or matched methods. The new c2dOptions command lets
you specify an optional Thiran all-pass filter. The Thiran filter approximates fractional
delays for improved phase matching between continuous and discretized models.
Previously, c2d rounded fractional time delays to the nearest multiple of the sampling
time when using the tustin or matched methods. For more information, see the c2d
and c2dOptions reference pages and Continuous-Discrete Conversion Methods in the
Control System Toolbox User Guide.

New Commands for Specifying Options for Continuous-Discrete
Conversions

New commands c2dOptions, d2dOptions, and d2cOptions make it easier to specify
options for

• Discretization using c2d

• Resampling using d2d.
• Conversion from discrete to continuous time using d2c.

Compatibility Considerations

This release deprecates the prewarp method for c2d, d2d, and d2c. Instead, use
c2dOptions, d2dOptions, or d2cOptions to specify the tustin method and a prewarp
frequency. For more information, see Continuous-Discrete Conversion Methods and the
c2d, d2d, and d2c reference pages.

New FDEL Command to Remove Specified Data from Frequency Response
Data (FRD) Models

You can now remove selected data from frd models using the new fdel command. For
example, use fdel to:

• Remove spurious or unneeded data from frd models you create from measured
frequency response data.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/c2d.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/c2doptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs08hih.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs08hih.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/c2d.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/d2d.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/d2c.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fdel.html

13-3

• Remove data at intersecting frequencies from frd models before merging them into a
single frd model with fcat, which can only merge frd models containing no common
frequencies.

For more information, see fdel reference page.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fdel.html

R2009b
Version: 8.4

New Features

R2009b

14-2

Ability to Design Compensators for New Types of Plants

In the SISO Design Tool, you can now design compensators for plants models that:

• Contain time delays

Previously, you had to approximate delays before designing compensators.
• You specify as frequency-response data (FRD)

For more information on designing compensators using the SISO Design Tool, see SISO
Design Tool.

New Automated PID Tuning Method

You can now tune compensators using a new automated PID tuning algorithm called
Robust Response Time, which is available in the SISO Design Tool. You specify the
open-loop bandwidth and phase margin, and the software computes PID parameters to
robustly stabilize your system.

For information on tuning compensators using automated tuning methods, see
Automated Tuning.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-978158.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-978158.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032615

R2009a
Version: 8.3

New Features

Compatibility Considerations

R2009a

15-2

Variable q Now Defined as the Forward Shift Operator z

The variable q is now defined in the standard way as the forward shift operator z.
Previously, q was defined as z-1.

Note: This new definition is consistent with the System Identification Toolbox definition
of q.

Compatibility Considerations

If you use the q variable, you may receive different results than in previous releases
when you:

• Create a transfer function
• Modify the num or den properties of an existing transfer function

The resulting transfer function differs from previous releases when both the

• Variable property is set to q
• num and den properties have different lengths

For example, the following code:

H = tf([1,2],[1 3 8],0.1,'Variable','q')

now returns the transfer function

q

q q

z

z z

+

+ +

∫
+

+ +

2

3 8

2

3 8
2 2

Previously, the code returned the transfer function

1 2

1 3 8

1 2

1 3 8

2

3 8
2

1

1 2

2

2

+

+ +

∫
+

+ +

∫
+

+ +

-

- -

q

q q

z

z z

z z

z z

The two transfer functions have different numerators.

R2008b
Version: 8.2

New Features

Compatibility Considerations

R2008b

16-2

New Design Tools for Linear-Quadratic-Gaussian (LQG) Servo Controllers
with Integral Action

You can now design a Linear-Quadratic-Gaussian (LQG) servo controller for set-point
tracking using the new lqi and lqgtrack commands. This compensator ensures that
the system output tracks the reference command and rejects process disturbances and
measurement noise.

For more information on forming LQG servo controllers, see Linear-Quadratic-Gaussian
(LQG) Design, the lqi reference page, and the lqgtrack reference page.

Current Flag Moved from lqgreg to kalman

The 'current' flag was moved from the lqgreg function to the kalman function.

Compatibility Considerations

The following code:

kest = kalman(sys,Qn,Rn)

c = lqgreg(kest,k)

now returns the current regulator u n Kx n n[] = - []ˆ | instead of the delayed regulator
u n Kx n n[] = - -[]ˆ | 1 .

To update your code to return the same results as in previous releases, use the following
code with the added string 'delayed' in the kalman command:

kest = kalman(sys,Qn,Rn,'delayed')

c = lqgreg(kest,k)

For information on using these functions with the current flag in the kalman function,
see the kalman and lqgreg reference pages.

New Upsampling Method for Rate Conversion in Discrete-Time Models

You can now upsample a discrete-time system to an integer multiple of the original
sampling rate without any distortion in the time or frequency domain using the
upsample command.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/f2-1049484.html#f2-1053272
http://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/f2-1049484.html#f2-1053272
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lqi.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lqgtrack.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/kalman.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lqgreg.html

16-3

For more information on upsampling, see the upsample reference page and Upsample a
Discrete-Time System in the Control System Toolbox User's Guide.

New Scaling Tools to Enhance the Accuracy of Computations with State-
Space Models

You can now scale state-space models to maximize accuracy over the frequency band of
interest using the prescale command and associated GUI. Use this functionality when
you cannot achieve good accuracy at all frequencies and some tradeoff is necessary. A
warning alerts you when accuracy may be poor and using prescaling is recommended.

For more information on setting the frequency band for scaling state-space realizations,
see Scaling State-Space Models and the prescale reference page.

New Command to Reorder the States of State-Space Models

You can now reorder the states of state-space models according to a specified
permutation using the xperm command.

For more information on reordering states, see the xperm reference page.

Enhanced Support for Customizing Response Plots

You can now make the following changes to your Control System Toolbox response plots
using the figure plotting tools:

• System name
• Line color
• Line style
• Line width
• Marker type

For more information on customizing the appearance of response plots using plot tools,
see Customizing Response Plots Using Plot Tools in the Control System Toolbox User's
Guide.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/upsample.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs8h611-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs8h611-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f0-1005744.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/prescale.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/xperm.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/brrfdtx.html

R2008a
Version: 8.1

New Features

R2008a

17-2

Updated Error and Warning Message System

The Control System Toolbox error and warning IDs and messages have been updated. If
you use error and warning IDs in your code, you must update your code to reflect the new
IDs.

R2007b
Version: 8.0.1

New Features

R2007b

18-2

Updated and Expanded Demos

The Control System Toolbox demos have been reformatted and expanded to include more
examples and content. Demos in the following categories now have new and improved
content:

• Getting Started with LTI Models
• Discretization and Sampling Rate Conversions
• How to Get Accurate Results

To open the Control System Toolbox demos, type

demo toolbox control

at the MATLAB prompt.

R2007a
Version: 8.0

New Features

R2007a

19-2

Analysis of Time Delay Systems Now Fully Supported

Control System Toolbox software now lets you:

• Model, simulate, and analyze any interconnection of linear systems with delays, such
as systems containing feedback loops with delays.

• Exactly analyze and simulate control systems with long delays. You can evaluate
control strategies, such as Smith Predictor and PID control for first-order-plus-dead-
time plants.

• Use new commands for modeling state-space models with delays including: delayss,
getDelayModel, and setDelayModel.

For more information, see the section on Models with Time Delays in the Control System
Toolbox documentation.

New and Updated Automated Tuning Methods

Control System Toolbox software now provides the following new and updated automated
tuning methods:

• New Singular Frequency Based Tuning lets you design PID compensators for both
stable and unstable plants.

• New H-infinity Loop Shaping lets you find compensators based on a desired open-loop
bandwidth or loop shape. This feature requires Robust Control Toolbox software.

• Updated Internal Model Control (IMC) Tuning now supports unstable plants.

For more information, see the section on automated tuning in the Control System
Toolbox documentation.

New Tustin and Prewarp Options for d2d Function

The d2d function now includes the following new options for the resampling method:

• 'tustin'—Performs Bilinear (Tustin) approximation
• 'prewarp'—Performs Tustin approximation with frequency prewarping

For more information, see the d2d reference pages.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/delayss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/getdelaymodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/setdelaymodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bstzkhr.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032615
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032615
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/d2d.html

R2006b
Version: 7.1

New Features

R2006b

20-2

New Loop Configurations in the SISO Design Tool

Two new loop configurations are available from the SISO Design Tool. See Modifying
Block Diagram Structure for more information.

New Design Requirements

The LTI Viewer now supports step response and upper/lower time bound design
requirements. See Adding Design Requirements to the LTI Viewer for more information.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032684
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f2-1033890.html#f2-1032684
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/f0-1016288.html#f0-1020036

R2006a
Version: 7.0

New Features

R2006a

21-2

SISO Design Tool

The SISO Design Tool now provides one-click automated tuning using systematic
algorithms such as Ziegler-Nichols PID tuning, IMC design, and LQG design. In addition,
you can calculate low-order approximations of the IMC/LQG compensators to keep the
control system complexity low.

Compensator Optimization Is Now Supported

If you have installed Simulink Response Optimization™ software, you can now optimize
the compensator parameters inside the SISO Design Tool GUI. You can specify time- and
frequency-domain requirements on SISO Design Tool plots such as bode and step, and
use numerical optimization algorithms to automatically tune your compensator to meet
your requirements. See the Simulink Response Optimization documentation for more
details.

Improved Compensator Editor

The Compensator Editor used to edit the numerical values of poles and zeros has been
upgraded to better handle common control components such as lead/lag and notch filters.

Multi-Loop Compensator Design Support

Many control systems involve multiple feedback loops, some of which are coupled and
need joint tuning. The SISO Design Tool now lets you analyze and tune multi-loop
configurations. You can focus on a specific loop by opening signals to remove the effects of
other loops, gain insight into loop interactions, and jointly tune several SISO loops.

SISO Design Tool Fully Integrated with the Controls & Estimation Tools Manager

To improve workflow and better leverage other tools, such as Simulink Control Design
software and Simulink Response Optimization software, the SISO Design Tool is now
fully integrated with the Controls & Estimation Tools Manager (CETM). This provides a
signal environment for the design and tuning of compensators.

When you open the SISO Design Tool, the CETM also opens with a SISO Design
Task. Many SISO Design Tool features, such as importing models, changing loop
configurations, etc., have been moved to the SISO Design Task in CETM. In addition,
related tasks such as Simulink based Tuning and Compensator Optimization are
seamlessly integrated with the SISO Design Task. See the Control System Toolbox
Getting Started Guide for details on the new work flow.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/bq03wnb.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/getstart/bq03wnb.html

21-3

LTI Viewer Enhancements

The LTI Viewer now lets you plot the response of a system to user-defined input signals
(lsim) and initial conditions (initial). A new GUI lets you select input signals from a
signal generator library, or import signal data from a variety of file formats.

LTI Objects

Descriptor and Improper State-Space Models Fully Supported

There is now full support for descriptor state-space models with a singular E matrix. This
now lets you build state-space representations, such as PID, and manipulate improper
models with the superior accuracy of state-space computations. In previous versions, only
descriptor models with a nonsingular E matrix were supported.

New Commands to Calculate Time Response Metrics

The new stepinfo and lsiminfo commands compute time-domain performance metrics,
such as rise time, settling time, and overshoot. You can use these commands to write
scripts that automatically verify or optimize such performance requirements. Previously,
these metrics were available only from response plots.

Simplified System Interconnections Using I/O Channel Names

The commands connect, feedback, series, parallel, and lft now let you connect systems
by matching names of I/O channels. A helper function, sumblk, has also been added to
simplify the specification of summing junctions. Altogether this considerably simplifies
the task of deriving models for complicated block diagrams. In previous releases, only
index-based system connection was supported.

Changes in the Representation of I/O Delays in State-Space Models

The ioDelay property is deprecated from state-space models. Instead, these models have
a new property called InternalDelay for logging all delays that cannot be pushed to
the inputs or outputs. Driving this change is the switch to a representation of delays in
terms of delayed differential equations rather than frequency response. See Models with
Time Delays in the Control System Toolbox documentation for more details on internal
delays, and ss/getdelaymodel for details on the new internal representation of state-
space models with delays.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/stepinfo.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lsiminfo.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/connect.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/feedback.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/series.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/parallel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/lft.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bstzkhr.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bstzkhr.html

R2006a

21-4

New Name Property for LTI Objects

This new property lets you attach a name (string) to a given LTI model. The specified
name is reflected in response plots.

New Commands and Operations for LTI Objects

The new exp command simplifies the creations of continuous-time transfer functions
with delays. For more information, type help lti/exp at the MATLAB prompt.

The frd object has the following new methods:

• fcat — Concatenates one or more FRD models along the frequency dimension (data
merge).

• fselect — Selects frequency points or range in frd model.
• fnorm — Calculates pointwise peak gain of frd model.

The .* operation is supported for transfer functions and zero-pole-gain objects. This
allows you to perform element-by-element multiplication of MIMO models.

Numerical Algorithms

There have been several major improvements in the Control System Toolbox numerical
algorithms, many of which benefit the upgraded SISO Design Tool:

• New scaling algorithm that maximizes accuracy for badly scaled state-space models
• Performance improvement in time and frequency response computations through

MEX-files
• More accurate computations of the zero-pole-gain and transfer function

representations of a state-space model
• More accurate state-space representations of zero-pole-gain models
• Better handling of nonminimal modes in model reduction commands (balred,

balreal)
• canon now computes a block modal form for A matrices that are not diagonizable or

are nearly defective
• Exact phase computation for zero-pole-gain models in bode and nichols
• Accurate handling of improper models using the descriptor state-space representation

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/frd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fcat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fselect.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/fnorm.html

R14SP3
Version: 6.2.1

No New Features or Changes

R14SP2
Version: 6.2

New Features

R14SP2

23-2

Command-Line API for Customizing Plots

The Control System Toolbox software now provides a command-line API for customizing
units, labels, limits, and other plot options. You can now change default plot options
before generating a plot, or modify plot properties after creation.

For a detailed description of the commands, see the Control System Toolbox
documentation.

Constraint Types for SISO Design

You can now create

• Single piecewise linear constraints for root-locus and Bode plots
• Gain/phase exclusion regions for Nichols plots

Design constraints are displayed as shaded regions.

Bode and Nichols Plots Have Additional Options

When editing Bode and Nichols plots, you can now

• Set the lower limit of the magnitude manually.
• Adjust the phase offsets by multiples of 360 degrees to facilitate comparing multiple

responses.

Model-Approximation and Order-Reduction Commands

New commands have been added for model approximation and order reduction:

• hsvd computes and plots the Hankel singular values.
• balred computes low-order approximations using a numerically stable, balancing-free

algorithm. You can perform multiple order reductions with a single command.

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/hsvd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html

